

LA-UR-18-24582

Approved for public release; distribution is unlimited.

Title: Spatially REsolved Fission Tag (SREFT) - a low-mass TPC

Author(s): Schmitt, Kyle Thomas

Intended for: Slides to be shared with potential collaborators

Issued: 2018-05-25

Spatially REsolved Fission Tag (SREFT) – a low-mass TPC

Leveraging experience from the NIFFTE TPC to tackle other fission observables

March 30, 2018

Challenge of high alpha decay rates

PHYSICAL REVIEW C 94, 034611 (2016)

Goal: Measure fission fragment energy for samples with lots of alpha activity

Imagine a world where protons don't matter...

	Hydrogen standard measurement (fissionTPC)	Just measure fission fragments and reject alpha (something new)
Position resolution	0.3 mm	1 mm
Gas pressures	1-10 atm	1 atm
Anode size	11 cm diameter	12 cm diameter
Channel count	6000	400
Dynamic range per pad	~10 keV - 100 MeV	~500 keV - 100 MeV
Gas gain	~50	1
Gas mixtures	Not sure yet	P10

SREFT Design goals

Basic requirement: Reject alphas and count fission fragments

- Anode dynamic range from ~500 keV to ~100 MeV
- Minimal scatter or attenuation for outgoing neutrons and gammas
- ~100% alpha-particle rejection
- Low operational cost (people)
- Energy resolution ~ 1 MeV for fission fragments
- Use drift gas with measured pulse height defect (P10)
- Angular resolution ~3°, vertex resolution
 ~1 mm

Using our imagination...

Frisch grids

- Nickel mesh bonded to stainless steel ring by Precision Eforming
- 100 Lines per inch more coarse than TPC
- Prototypes in hand tight and smooth

Cathode/field cage

- Similar design to fissionTPC
- PCB design in preparation

Machined parts

- Drawings in preparation
- CAEN 1740 Digitizers
 - -64 channels per module
 - -12 bit/ 62.5 MHz(one arriving soon)

Anodes

- 187 Pads per anode
- Fine segmentation in central region (4mm pads)
- Large outer pads overlap azimuthally
- Frisch grid bias passes through board
- PCB acts as part of gas containment vessel
- First prototype to arrive next week

Anodes

- 187 Pads per anode
- Fine segmentation in central region (4mm pads)
- Large outer pads overlap azimuthally
- Frisch grid bias passes through board
- PCB acts as part of gas containment vessel
- First prototype to arrive next week

Anode boards

Potential data needs

- Total Kinetic Energy (TKE) of fission fragments with in-situ calibration
- •TKE for hot samples (Pu-239, 240, 238?)
- Correlated neutrons and gamma-rays
- • (n,α)
- •(n,x α)
- Beam imaging in support of other experiments
- Minor actinide fission cross section ratios

We envision an extensive long-term program

- Calibrated TKE measurements and TKE for hot samples
- Correlated neutrons and gamma-rays
- Minor actinide fission cross section ratios
- Beam imaging and flux monitoring
- ²³⁹Pu fission cross section in ratio to ¹H(n,n) with an ancillary proton-scattering-based detector

How does this relate to the future of NIFFTE?

- Overlapping interests
 - –Correlated particles
 - -Minor actinide fission cross sections
 - -Fission Product Yields (FPY)
- Similar designs
- Some of the same people (Shea, Kyle, Morgan)
- Shared funding?
- Shared hardware?

Extra Slides

Goal	Design parameters
Anode dynamic range from ~500 keV to ~100 MeV	No gas gain
Minimal scatter or attenuation for outgoing neutrons and gammas	Thin gas containment vessel and pressure=atmospheric
~100% alpha-particle rejection, angular resolution ~3°, vertex resolution ~1 mm	4 mm segmentation for inner area and ~2 mm Frisch grid gap to disperse signal between tracks, fine segmentation area large enough to catch tracks on ~10 pads
Energy resolution ~1 MeV for fission fragments	Use Michael Mendenhall's resolution minimization method. Low channel count helps.
Use drift gas with measured pulse height defect	P-10 gas (simple gas handling system)
Short development time	Off-the-shelf electronics (CAEN 1740, \$150/channel), use NIFFTE preamps

The challenge of starting from scratch (NIFFTE in ~2010)

Basic requirement: Count protons, alphas, and fission fragments

- Anode dynamic range from ~10 keV to ~100 MeV
- Micromegas gas gain ~50?
- Pressure vessel must hold several atm
- Gas handling system must handle exotic gas mixtures
- ~6000 Anode pads, substantial power and cooling requirements
- Nobody has ever done this before
- Waveform digitization is relatively new technology

Important design goals

- 100% α -particle rejection
- Good energy resolution for fission fragments
- Target imaging makes it possible to mount a Cf-252 target close to the sample for in-situ energy calibration
- Thin-walled chamber to allow good ancillary detector efficiency for outgoing neutrons and gamma-rays
- Stable operation without constant monitoring
 - -Low channel count
 - –No cooling required
 - -Modest power budget
 - -Off-the-shelf data acquisition modules inside a cooled rack